Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
3.
J Virol ; 97(3): e0166422, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2238656

ABSTRACT

Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , Coronavirus Infections , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , COVID-19/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Seasons , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Protection/immunology
4.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2232600

ABSTRACT

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Subject(s)
COVID-19 , Common Cold , Coronavirus 229E, Human , Coronavirus NL63, Human , Humans , Animals , Mice , Aged , SARS-CoV-2 , Cross Protection
5.
Iran J Immunol ; 18(1): 47-53, 2021 03.
Article in English | MEDLINE | ID: covidwho-2091347

ABSTRACT

BACKGROUND: Incidence and severity of SARS-CoV2 infection are significantly lower in children and teenagers proposing that certain vaccines, routinely administered to neonates and children may provide cross-protection against this emerging infection. OBJECTIVE: To assess the cross-protection induced by prior measles, mumps and rubella (MMR) vaccinations against COVID-19. METHODS: The antibody responses to MMR and tetanus vaccines were determined in 53 patients affected with SARS-CoV2 infection and 52 age-matched healthy subjects. Serum levels of antibodies specific for NP and RBD of SARS-CoV2 were also determined in both groups of subjects with ELISA. RESULTS: Our results revealed significant differences in anti-NP (P<0.0001) and anti-RBD (P<0.0001) IgG levels between patients and healthy controls. While the levels of rubella- and mumps specific IgG were not different in the two groups of subjects, measles-specific IgG was significantly higher in patients (P<0.01). The serum titer of anti-tetanus antibody, however, was significantly lower in patients compared to healthy individuals (P<0.01). CONCLUSION: Our findings suggest that measles vaccination triggers those B cells cross-reactive with SARS-CoV2 antigens leading to the production of increased levels of measles-specific antibody.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/immunology , Immunization , Immunoglobulin G/blood , Measles-Mumps-Rubella Vaccine/therapeutic use , SARS-CoV-2/immunology , Age Factors , Aged , B-Lymphocytes/immunology , B-Lymphocytes/virology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Cross Protection , Cross Reactions , Female , Host-Pathogen Interactions , Humans , Male , Measles-Mumps-Rubella Vaccine/immunology , Middle Aged , Tetanus Toxoid/immunology , Tetanus Toxoid/therapeutic use
6.
Nature ; 607(7918): 351-355, 2022 07.
Article in English | MEDLINE | ID: covidwho-1852428

ABSTRACT

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


Subject(s)
COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection/immunology , Cytokines , Humans , Mice , SARS-CoV-2/classification , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
7.
Nature ; 607(7918): 356-359, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830078

ABSTRACT

The extent to which Omicron infection1-9, with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3-9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19-27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Ad26COVS1/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cross Protection/immunology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
8.
J Virol ; 96(8): e0016922, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1765080

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Subject(s)
COVID-19 Vaccines , Coronavirus Infections , Cross Protection , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chiroptera , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection/immunology , Humans , Mice , Mice, Transgenic , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Viral Zoonoses/prevention & control
9.
Signal Transduct Target Ther ; 7(1): 61, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1758178

ABSTRACT

Variants are globally emerging very quickly following pandemic prototypic SARS-CoV-2. To evaluate the cross-protection of prototypic SARS-CoV-2 vaccine against its variants, we vaccinated rhesus monkeys with three doses of prototypic SARS-CoV-2 inactivated vaccine, followed by challenging with emerging SARS-CoV-2 variants of concern (VOCs). These vaccinated animals produced neutralizing antibodies against Alpha, Beta, Delta, and Omicron variants, although there were certain declinations of geometric mean titer (GMT) as compared with prototypic SARS-CoV-2. Of note, in vivo this prototypic vaccine not only reduced the viral loads in nasal, throat and anal swabs, pulmonary tissues, but also improved the pathological changes in the lung infected by variants of Alpha, Beta, and Delta. In summary, the prototypic SARS-CoV-2 inactivated vaccine in this study protected against VOCs to certain extension, which is of great significance for prevention and control of COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Protection , SARS-CoV-2/drug effects , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Anal Canal/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Humans , Immunogenicity, Vaccine , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pharynx/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Load/drug effects
10.
Pediatr Infect Dis J ; 41(2): e36-e45, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1722659

ABSTRACT

Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2. There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.


Subject(s)
Adaptive Immunity , Age Factors , COVID-19/immunology , Immunity, Heterologous , Immunity, Innate , SARS-CoV-2/immunology , Adult , Angiotensin-Converting Enzyme 2/metabolism , Blood Coagulation/immunology , Child , Cross Protection , Cross Reactions , Endothelium/immunology , Humans , Patient Acuity , Serine Endopeptidases/metabolism , Viral Load/immunology
11.
J Clin Invest ; 131(24)2021 12 15.
Article in English | MEDLINE | ID: covidwho-1664126

ABSTRACT

The increasing frequency of pathogenic coronaviruses in the human population has raised public health concerns about possible future pandemics. It is critical to understand whether immune responses to the current circulating coronaviruses provide protection against related viruses or those that may emerge in the future. In this issue of the JCI, Dangi, Palacio, and co-authors detail the extent of coronavirus cross-protection following both vaccination and natural infection and ultimately used murine models to highlight the mechanism behind this heterotypic immunity. This study provides insight into the possibility of a pan-coronavirus vaccine that could protect humans against future coronavirus outbreaks.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , COVID-19/prevention & control , Coronavirus Infections/prevention & control , Cross Protection , Animals , COVID-19/therapy , Coronavirus Infections/immunology , Disease Models, Animal , Disease Outbreaks , Humans , Immune System , Mice , Vaccination , Vaccines
13.
Nat Med ; 28(3): 472-476, 2022 03.
Article in English | MEDLINE | ID: covidwho-1632511

ABSTRACT

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant of concern (VOC) has destabilized global efforts to control the impact of coronavirus disease 2019 (COVID-19). Recent data have suggested that B.1.1.529 can readily infect people with naturally acquired or vaccine-induced immunity, facilitated in some cases by viral escape from antibodies that neutralize ancestral SARS-CoV-2. However, severe disease appears to be relatively uncommon in such individuals, highlighting a potential role for other components of the adaptive immune system. We report here that SARS-CoV-2 spike-specific CD4+ and CD8+ T cells induced by prior infection or BNT162b2 vaccination provide extensive immune coverage against B.1.1.529. The median relative frequencies of SARS-CoV-2 spike-specific CD4+ T cells that cross-recognized B.1.1.529 in previously infected or BNT162b2-vaccinated individuals were 84% and 91%, respectively, and the corresponding median relative frequencies for SARS-CoV-2 spike-specific CD8+ T cells were 70% and 92%, respectively. Pairwise comparisons across groups further revealed that SARS-CoV-2 spike-reactive CD4+ and CD8+ T cells were functionally and phenotypically similar in response to the ancestral strain or B.1.1.529. Collectively, our data indicate that established SARS-CoV-2 spike-specific CD4+ and CD8+ T cell responses, especially after BNT162b2 vaccination, remain largely intact against B.1.1.529.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Cross Protection , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , Humans , Spike Glycoprotein, Coronavirus
14.
Science ; 375(6577): 183-192, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625678

ABSTRACT

The impact of the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infecting strain on downstream immunity to heterologous variants of concern (VOCs) is unknown. Studying a longitudinal healthcare worker cohort, we found that after three antigen exposures (infection plus two vaccine doses), S1 antibody, memory B cells, and heterologous neutralization of B.1.351, P.1, and B.1.617.2 plateaued, whereas B.1.1.7 neutralization and spike T cell responses increased. Serology using the Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. Neutralization potency fell differentially depending on targeted VOCs over the 5 months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Female , Health Personnel , Humans , Longitudinal Studies , Male , Memory B Cells/immunology , Mutation , Phosphoproteins/immunology , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccine Potency
15.
Sci Rep ; 11(1): 24198, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585789

ABSTRACT

Certain immunizations including vaccination against tick-borne encephalitis virus (TBEV) have been suggested to confer cross-protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Within a prospective healthcare worker (HCW) cohort, we assessed the potentially protective role of anti-TBEV antibodies against SARS-CoV-2 infection. Among 3352 HCW, those with ≥ 1 previous TBEV vaccination (n = 2018, 60%) showed a reduced risk of SARS-CoV-2 seroconversion (adjusted odds ratio: 0.8, 95% CI: 0.7-1.0, P = 0.02). However, laboratory testing of a subgroup of 26 baseline and follow-up samples did not demonstrate any neutralizing effect of anti-TBEV antibodies against SARS-CoV-2 in live-virus neutralization assay. However, we observed significantly higher anti-TBEV antibody titers in follow-up samples of participants with previous TBEV vaccination compared to baseline, both TBEV neutralizing (p = 0.001) and total IgG (P < 0.0001), irrespective of SARS-CoV-2 serostatus. Based on these data, we conclude that the observed association of previous TBEV vaccination and reduced risk of SARS-CoV-2 infection is likely due to residual confounding factors. The increase in TBEV follow-up antibody titers can be explained by natural TBEV exposure or potential non-specific immune activation upon exposure to various pathogens, including SARS-CoV-2. We believe that these findings, although negative, contribute to the current knowledge on potential cross-immunity against SARS-CoV-2 from previous immunizations.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Cross Protection/immunology , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/virology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/physiology , Seroconversion , Vaccination
16.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
17.
Cell Rep ; 38(3): 110256, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1588136

ABSTRACT

Inoculation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing worldwide. However, the emergence of SARS-CoV-2 variants could cause immune evasion. We developed a bivalent nanoparticle vaccine that displays the receptor binding domains (RBDs) of the D614G and B.1.351 strains. With a prime-boost or a single-dose strategy, this vaccine elicits a robust neutralizing antibody and full protection against infection with the authentic D614G or B.1.351 strain in human angiotensin-converting enzyme 2 transgene mice. Interestingly, 8 months after inoculation with the D614G-specific vaccine, a new boost with this bivalent vaccine potently elicits cross-neutralizing antibodies for SARS-CoV-2 variants in rhesus macaques. We suggest that the D614G/B.1.351 bivalent vaccine could be used as an initial single dose or a sequential enforcement dose to prevent infection with SARS-CoV-2 and its variants.


Subject(s)
COVID-19/prevention & control , Cross Protection , SARS-CoV-2/immunology , Vaccines, Combined/therapeutic use , Animals , CHO Cells , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Chlorocebus aethiops , Cricetulus , Cross Protection/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles , Vaccination/methods , Vaccines, Combined/chemical synthesis , Vaccines, Combined/immunology , Vero Cells
18.
Int J Infect Dis ; 113 Suppl 1: S78-S81, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1575136

ABSTRACT

After a century of controversies on its usefulness in protection against TB, underlying mechanisms of action, and benefits in various groups and geographical areas, the BCG vaccine is yet again a focus of global attention- this time due to the global COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have shown that human CD4+ and CD8+ T-cells primed with a BCG-derived peptide developed high reactivity to its corresponding SARS-CoV-2-derived peptide. Furthermore, BCG vaccine has been shown to substantially increase interferon-gamma (IFN-g) production and its effects on CD4+ T-cells and these non-specific immune responses through adjuvant effect could be harnessed as cross protection against severe forms of COVID-19.The completion of ongoing BGG trials is important as they may shed light on the mechanisms underlying BCG-mediated immunity and could lead to improved efficacy, increased tolerance of treatment, and identification of other ways of combining BCG with other immunotherapies.


Subject(s)
BCG Vaccine , COVID-19 , Cross Protection , Humans , Pandemics , SARS-CoV-2
19.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: covidwho-1556254

ABSTRACT

We hypothesized that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, including generating reduced susceptibility in children. To determine what the prepandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 y of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.8 y (95% CI 6.3 to 8.1) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Age Factors , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , Coronavirus , Coronavirus Infections/transmission , Cross Protection , England/epidemiology , Forecasting , Humans , SARS-CoV-2 , Seasons , Wales/epidemiology
20.
Viruses ; 13(12)2021 12 04.
Article in English | MEDLINE | ID: covidwho-1554851

ABSTRACT

The persistent circulation of SARS-CoV-2 represents an ongoing global threat due to the emergence of new viral variants that can sometimes evade the immune system of previously exposed or vaccinated individuals. We conducted a follow-up study of adult individuals that had received an inactivated SARS-CoV-2 vaccine, evaluating antibody production and neutralizing activity over a period of 6 months. In addition, we performed mice immunization with inactivated SARS-CoV-2, and evaluated the immune response and pathological outcomes against Gamma and Zeta variant infection. Vaccinated individuals produced high levels of antibodies with robust neutralizing activity, which was significantly reduced against Gamma and Zeta variants. Production of IgG anti-S antibodies and neutralizing activity robustly reduced after 6 months of vaccination. Immunized mice demonstrated cellular response against Gamma and Zeta variants, and after viral infection, reduced viral loads, IL-6 expression, and histopathological outcome in the lungs. TNF levels were unchanged in immunized or not immunized mice after infection with the Gamma variant. Furthermore, serum neutralization activity rapidly increases after infection with the Gamma and Zeta variants. Our data suggest that immunization with inactivated WT SARS-CoV-2 induces a promptly responsive cross-reactive immunity response against the Gamma and Zeta variants, reducing COVID-19 pathological outcomes.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection , Cytokines/metabolism , Follow-Up Studies , Humans , Immunization , Lung/metabolism , Lung/pathology , Mice , Vaccines, Inactivated/administration & dosage , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL